Modding Guide

"It’s how you use it!”

Using K1n9_Duk3’s Enormous Tool
to modify Duke Nukem II

Written by K1n9_Duk3
Published by 193 (Reloaded)

Compiled on August 19, 2013

© 2013 K1n9_Duk3 — All rights reserved.

http://home.arcor.de/k1n9duk3
http://k1n9duk3.ohost.de

Contents

Preface

I. The Tools

1. The Level Editor

1.1.
1.2.
1.3.
1.4.
1.5.
1.6.

2. The CZone Editor

2.1.
2.2.
2.3.

3.1.
3.2.

3.3.

The Sprite Editor

VIl

o

Level Files
Creating A New Level
Editing Map Settings o o
Selecting And Drawing Tiles
The Planes e
Level Format & Limitations
1.6.1. Tiles And Tile Attributes
1.6.2. Masked Foreground Tiles
1.6.3. Limited Number Of Actors
1.6.4. Limited Amount Of Memory

S O UL UL UL s e W W W

CZone Files e
Creating A New CZone
Editing A CZone

00~~~

Sprite Files
Editing The Sprites.o
3.2.1. Changing The Number Of Sprites And Frames
3.2.2. Sprite Properties L. 10
3.2.3. Frame Properties oo 11
Changing Images e 11
3.3.1. Editing Images With QuickPaint 11
3.3.2. Importing And Exporting Images 12
3.3.3. Palettes 12

O © © Y

II1

Contents

3.4. Image Format & Limitations 13
3.4.1. Sprite 29 . .. 13

3.4.2. Image Sizes And Hitbox Sizes 13

4. The VOC Converter 15
4.1. VOCFiles e e 15
4.1.1. Creative Voice Format 15

Il. Advanced Modding Techniques 17
5. Graphics 19
5.1. Color Palettes 19
5.2. Masked Images 19

6. Scripts 21
6.1. Script Files 21
6.2. Script Sections 21
6.2.1. &Calibrate 22

6.2.2. &Credits 22

6.2.3. &lInstructions 22

6.24. &Load 23

6.2.5. &Save e 23

6.2.6. &Story 23

6.2.7. 2Quit_Select 23

6.2.8. BAD.GAME 23

6.29. BetaOnly 23

6.2.10. Both. SI. 24

6.2.11. Episode_Select 24

6.2.12. Full_ Health 24

6.2.13. Game_Speed 24

6.2.14. God_Mode Off 24

6.2.15. God_-Mode On, 25

6.2.16. Hints 25

6.2.17. HYPE 25

6.2.18. Key Config 25

6.2.19. Main . Menu e 25

6.2.20. Music.Off 25

6.2.21. Music.On 26

6.2.22. My Options o i 26

6.2.23. New_Highscore, 26

v

Contents

6.3.

6.2.24. No_Can_Order 26
6.2.25. No_Game_Restore 26
6.2.26. Not_In.Game, 26
6.2.27. Now_Ch e 27
6.2.28. Ordering Info, 27
6.2.29. Password 27
6.2.30. Paused 27
6.2.31. Q. Order 27
6.2.32. Quit_Select 28
6.2.33. Restore_Game 28
6.2.34. Save_Game 28
6.2.35. Skill_Select 28
6.2.36. Sound_Off 28
6.2.37. Sound_On e 28
6.2.38. The Prey 29
6.2.39. VAORDER 29
6.2.40. Volumel 29
6.2.41. Volume2o 29
6.2.42. Volume3 29
6.2.43. Volumed oo 30
6.2.44. Warp e 30
6.2.45. Weapon_Select 30
Script Commands 30
6.3.1. APage 30
6.3.2. BabbleOff 31
6.3.3. BabbleOn 31
6.3.4. CenterWindow 31
6.3.5. CWText e 32
6.3.6. Delay 32
6.3.7. End 32
6.3.8. ETE e 32
6.3.9. ExitToDemo 33
6.3.10. FadeIn 33
6.3.11. FadeOut 33
6.3.12. GetNames 34
6.3.13. GetPal 34
6.3.14. HelpText o 34
6.3.15. Keys 35
6.3.16. LoadRaw 35
6.3.17. Menu 35
6.3.18. NoSounds 35

Contents

6.3.19.
6.3.20.
6.3.21.
6.3.22.
6.3.23.
6.3.24.
6.3.25.
6.3.26.
6.3.27.
6.3.28.
6.3.29.
6.3.30.

PageskEnd
PagesStart Lo
PAK (Press Any Key)
SetCurrentPage L.
SetKeys e
ShiftWin

7. Breaking Shareware Compatibility

7.3. Registered-Only Files

7.3.1.
7.3.2.
7.3.3.
7.3.4.

Appendix

Backdrops
CZones e
Music e
Fullscreen Images,

A. MS-DOS Filenames

A.1. Names

A2, EXtensions o

B. FAQ

List of Tables

List of Figures

VI

45

47
47
48

49
51

53

Preface

This guide was written for all those who want to use K1n9_Duk3’s Enormous
Tool (referred to as “the editor”) to modify Duke Nukem II (referred to as “the
game”). It is both a manual for the editor and a documentation of the limitations
of the Duke Nukem II engine and its file formats.

You will find a chapter for each of the editor’s tools, explaining how to use the
tool and occasionally giving some hints on how to take full advantage of the game’s
capabilities.

Special Thanks

I would like to thank the following people for figuring out the structure of some of
the Duke Nukem II data files:

Dave Bollinger
“Szevvy”

“Malvineous”

This project would not have been possible without your work.

VII

Preface

Beta Information

The editor is still considered a beta version. Many tools contain some experimental
features and sometimes even allow you to set some settings (like the level width) to
values that are not “officially” supported. This was done to allow anyone testing
the editor to experiment a little and maybe even discover undocumented features
that were not even used in the original game.

If you have some unanswered questions or you find some errors in this document,
feel free to contact me:

e via e-mail to k1n9duk3@arcor.de

e via the Public Commander Keen Forum
(http://www.pckf.com, User: K1n9_Duk3)

e via the 3D Realms Forums
(http://forums.3drealms. com, User: King Duke)

VIII

http://www.pckf.com
http://forums.3drealms.com

Part |I.

The Tools

1. The Level Editor

1.1. Level Files

The filenames of the level files are hard-coded in the game’s main executable an can-
not be changed without modifying the executable. The filenames are:

e L1.MNI e M1 .MNI e N1.MNI e 01.MNI
e L2 MNI e M2 .MNI e N2 .MNI e 02.MNI
e L3.MNI e M3.MNI e N3.MNI e 03.MNI
e 14 MNI e M4 MNI e N4 .MNI e 04.MNI
e L5.MNI e M5 .MNI e N5.MNI e 05.MNI
e L6.MNI e M6.MNI e N6.MNI e 06.MNI
e L7.MNI e M7 .MNI e N7.MNI e O07.MNI
e L8.MNI e M8.MNI e N8.MNI e 08.MNI

L1.MNI through L8.MNI are the levels for the first episode. The others are for
episodes 2 through 4 and therefore are only found in the registered version of the
game.

1.2. Creating A New Level

When you want to create your own level, it is generally easier to start with a new
level rather than loading an existing level and erasing everything in it. When you
create a new level, you must set up the map settings before you can start edit-
ing the actual level. (Editing a level without a tileset would be rather pointless,
don’t you think?) See section 1.3 below for further information on the map set-
tings.

1. The Level Editor

If you’ve created a new level, you must enter a file name upon saving the level. You
can select any file name you want, but the game will only be able to use the level if
you save it as one of the files listed in section 1.1.

1.3. Editing Map Settings

This section of this document has yet to be written.

1.4. Selecting And Drawing Tiles

This section of this document has yet to be written.

1.5. The Planes

The level editor allows you to edit three different planes or layers:
1. solid (non-transparent) tiles
2. masked tiles
3. actors

The text in the bottom-left corner of the screen shows which plane is currently
selected. You can select a different plane by:

e left-clicking on the name of the plane in the bottom-left corner of the screen

e pressing , or for solid, masked and actors, respectively

e selecting a tile or an actor from the side bar on the left side of the screen

1.6. Level Format & Limitations

1.6. Level Format & Limitations

1.6.1. Tiles And Tile Attributes

Even though the level editor allows you to edit two separate planes for solid and
masked tiles, these planes are actually stored as one single plane in the level files.
A solid tile is stored as an offset into the planar image data in memory (multiples
of eight bytes), ranging from 0 to 7992. Masked tiles use values from 8000 to 14360
(multiples of 40 bytes). To get the tile attributes, the game appears to divide the
cell value by eight and then use the result as an index into the tile attribute array
stored in the CZone file.

If both a solid and a masked tile are present at one cell, the most significant bit in
the cell value is set (0x8000) and the lower 10 bits store the tile number (possible
values are 0 to 1023, but only 0 to 999 are valid tile numbers). This leaves 5 bits
for the masked tile number, which would only allow tile numbers from 0 to 31.
The level format actually stores two additional bits for each cell value, which allows
the level format to store masked tile numbers from 0 to 127 (1000 to 1127 in the
editor).

This means that you cannot use the masked tiles 1128 to 1159 in a cell that also
stores a solid tile. The editor will detect this as an error. If you save the level
anyway, the tile numbers will lose their most significant bit, which means that any
masked tile number greater than 1127 will be decreased by 128.

Unfortunately, the game does not decode these combined cell values to get the proper
tile attributes. This means that any cell that stores both a solid and a masked tile
will have no tile attributes in the game. The only attribute bit that is actually
used in the game is the foreground bit of the masked tile. All the other attribute
bits, including the foreground bit of the solid tile, will be ignored. When a tile
attribute is ignored, the editor displays the attribute information in the satus bar
in red.

1.6.2. Masked Foreground Tiles

Be very careful when using masked tiles that have the foreground bit set. The game
will freeze if there are more than 252 masked foreground tiles visible at the same
time! Solid foreground tiles are not affected by this limit.

The game probably uses a fixed-length array to store any masked foreground tiles
that are currently visible. Once that array is full, trying to find an empty slot in
the array could cause a deadlock.

1. The Level Editor

1.6.3. Limited Number Of Actors

The game will crash when you try to load a level that has more than 450 actors!
The skill flags (82 and 83) and the block boudaries (103 and 104) do not count as
actors.

However, even with less than 450 actors, there might be graphical issues like garbled
actor sprites. The actual limit causing this issue is currently unknown.

1.6.4. Limited Amount Of Memory

The game appears to provide a fixed amount of memory to be used by sprites and
music. This amount of memory appears to be independent of the amount of free
conventional memory.

If the game runs out of memory, it will crash. Depending on the amount of memory
used by the current level, the game may crash directly after loading the level, or
when the user brings up an in-game message or menu. The editor tries to pre-
dict the amount of memory that will be used by the level and generate warn-
ings or errors if certain limits are exceeded, but the results are not always reli-
able.

To make sure that your level will not run out of memory, you should playtest it on the
hardest skill level and press in the game to bring up the help screens. If that does
not force the game to crash, your level should work just fine.

2. The CZone Editor

2.1. CZone Files

CZone files contain the game’s tileset graphics and the attribute data for the tiles.
Each tile is an 8 x 8 pixel image composed of four color planes. There are al-
ways 1000 ’solid’ (or ’'unmasked’) tiles and 160 ’'masked’ tiles in a CZone file.
The masked tiles have a fifth color plane that indicates which pixels are trans-
parent.

CZones can have any filename that fits in the DOS naming scheme (see chapter A
on page 47). The only safe way to identify a CZone file is by its file size: CZone files
always have a size of 42000 bytes.

The original game uses the following CZone files:

e CZONE1.MNI e CZONE6.MNI e CZONEB.MNT
ZONE2 .MNI ZONE7 .MNI

* €20 e CZONE7 e CZONEC.MNI

e CZONE3.MNI e CZONES.MNI

e CZONE4.MNI e CZONE9.MNI e CZONED.MNI

e CZONE5.MNI e CZONEA.MNI e CZONEE.MNI

The files CZONE6.MNI through CZONED.MNI are only found in the registered version
of the game.

2.2. Creating A New CZone

To create a new CZone, you need to import an image sized 320 x 232 pixels. You
could use any other size that consitst of at least 1160 8 x 8 pixel tiles, but it is
advisable to use 320 x 232 pixels, as this is the format the CZone will be presented
to you in the level editor and the CZone editor.

2. The CZone Editor

The first 1000 tiles in the CZone image must be solid (non-transparent). Only
the last 160 tiles in a CZone are masked and therefore can use transparency. Not
every one of the masked tiles needs to have transparent pixels, though it is generally
advisable not to waste any of the few masked tile slots for a tile image that does
not use transparency at all. Drawing masked tiles is slower than drawing solid tiles
(see section 5.2), which is why you should not use masked tiles when you could use
a solid tile for the same purpose.

2.3. Editing A CZone

Note: The description for bit 10 originally was “fast animation”, but that turned
out to be wrong. If bit 10 is set, the animation will actually be slower than the
normal animation.

This section of this document has yet to be written.

3. The Sprite Editor

3.1. Sprite Files

The sprite data is split across two files. ACTORS.MNI contains the actual image data
for all sprites. ACTRINFO.MNI contains all information on the structure of the sprites,
such as width and height and the offsets of the image data in ACTORS . MNTI.

The game refers to the sprites and their frames by index. The sprites and frames
have no name. Fortunately, both the shareware and the registered version use the
same sprite file, so the indices are the same for both versions.

3.2. Editing The Sprites

When you start sprite editor, you must first load the sprites, using the “Load Sprites”
option. If the editor doesn’t already know the location of your Duke Nukem II
directory, it will ask you to select it. If the sprites were read successfully, the editor
will automatically go into edit mode.

The edit mode consists of three menu levels: the sprite list, the frame list (in-
cluding sprite settings), and the frame settings (including the Import, Export and
Edit Image options). You must select a sprite in the first menu level to access the
second level, and you must select a frame in the second level to get to the third
level.

3.2.1. Changing The Number Of Sprites And Frames

You can change the number of sprites by selecting the “Sprites:” entry in the first
level and pressing .

Be very careful when changing the number of sprites and frames! If you reduce
their numbers, the game might crash or do other weird things, because the sprite
and frame indices for many things are hard-coded in the game. If you increase the
number of sprites or frames, the game might run out of memory and crash (which

3. The Sprite Editor

]

Lo o Lo o oL oo L o o [o e o o [[o [[[o o [| =
Lo PP P PP L i b ek ek ek e D D DS D SEEEE T
== 1R =p 1y MU g Y- TR - T T M LT L = TH-- R ey W = LT — R

Figure 3.1.: The Sprite Editor’s Edit Mode

is bad), or you might not be able to save the sprite file anymore (which might be
worse). Make sure that the following is always true:

3 x SpriteCount + 8 x FrameCount < 65,536

(FrameCount is the total number of frames in the entire file.)

The number of sprites must not exceed 1000 and the number of frames for each
sprite must not exceed 100. There is no way to access sprites beyond index 999 or
frames beyond index 99 in the game, and therefore the editor will not allow you to
go beyond these limits.

3.2.2. Sprite Properties

Each sprite has two properties: the number of frames and a draw index.

The draw index defines the order in which the actors are updated an drawn onto
the screen during the actual game (i. e. in a level). The file format can store
any signed 16-bit value (-32,768 to 32,767), but only the values -1 to 3 are sup-
ported by the game. The actors with index -1 are updated and drawn first, there-
fore actors with a higher draw index will appear in front of actors with a lower
index.

Note: Actors with an unsupported draw index will not appear in the levels.

10

3.3. Changing Images

3.2.3. Frame Properties

Each frame has the following properties:

Width and Height (2 bytes each)

These properties define the width and height of the frame’s image (in tile
units). Each tile has a size of 8 x 8 pixels.

The width and height cannot be changed manually. They are updated auto-
matically when importing an image for the current frame.

HandleX and HandleY (2 bytes each)

These properties define a handle for drawing the image. The default handle (0,
0) is the bottom left tile of the image. The image will be shifted HandleX tiles
to the right and HandleY tiles down when the image is drawn. Both values
can be negative if the image should be shifted to the left or up.

Unknown Data (4 bytes)

The purpose of these bytes is still unknown. These might be a checksum or
simply bytes that were reserved for future enhancements of the sprite format.
They are displayed and can be edited as a 32-bit hexadecimal value.

These bytes do not seem to be used by the game. Just leave them as they are.

3.3. Changing Images

Images can either be edited with QuickPaint, which is included in the editor itself,
or exported to be edited with other programs.

3.3.1. Editing Images With QuickPaint

QuickPaint is a very primitive paint tool and works very much like the level editor.
You can select a color by clicking the right mouse button and you can draw a pixel
using the left mouse button. You can also use flood-fill by holding down the shift
key and then pressing the left mouse button. However, you cannot change the size
of the image.

11

3. The Sprite Editor

3.3.2. Importing And Exporting Images

You can import and export individual frames by using the Import Image and Export
Image options in the third level of edit mode (i. e. the context menu of a frame).
The images can be exported to and imported from indexed images in BMP, GIF
and PNG format.

You can also export and import all sprites using the respective function in the
sprite editor’s main menu. This will export all images to or import them from the
selected folder. The files are exported as PNG images, using filenames of the form
SO_FO0.PNG.

3.3.3. Palettes

The game defines which palette will be used to display the sprite’s images. Depend-
ing on the context, the same sprite image might be displayed using different palettes
and therefore look differently. The editor tries to map each sprite to the correct
palette as used by the game.

When exporting, the editor will write the same palette it uses to display the image
to the exported file. It will include a palette of usually 32 colors, where the first 16
colors are not transparent and the later half of the colors are fully transparent. The
sprites should only use the non-transparent colors and the first transparent color.
Using the higher colors of the palette has some interesting, but mostly undesired,
side effects (see section 5.2).

When a sprite is imported, the editor will ignore the actual colors in the palette.
It simply reads the palette indices for each pixel and converts the data back to the
5-plane tile data used by the game. Therefore, you must make sure that whichever
program you use to edit the exported images does not change the order of the colors
in the palette. For example, some PNG compressors will change the order of the
palette entries so that the transparent color entries appear first, because this results
in a smaller file. If the order is chaged, the imported image might use the wrong
colors in the game.

Note: Images exported as PNG images will have the upper half of the palette
marked as fully transparent colors. That means you cannot edit them with Microsoft
Paint, because Paint will save PNG images that include transparency as 32-bit
images. The palette will be lost and the editor will not be able to import the
modified file.

12

3.4. Image Format & Limitations

3.4. Image Format & Limitations

3.4.1. Sprite 29

Most of the sprites in Duke Nukem II store their image data as 5 bitplanes (4
planes of color information, plus a mask plane). The only exception is sprite number
29, which stores the bigger font used in the game’s main menu. All frames of sprite
29 use only 2 bitplanes (a color plane and a mask plane). In addition, the width
and height of the frames for sprite 29 are ignored by the game. The game assumes
that all frames are one tile wide and two tiles high.

3.4.2. Image Sizes And Hitbox Sizes

The larger sprite images are, the more memory they take up. Increasing the size
of a single sprite image could already cause the game to crash while loading a level
which requires this sprite.

Another limitation of the sprite format is that the width and height of the images
appear to also affect the size of the actor’s hitboxes. For example, if you increase
the height of the Duke sprites (sprites 5 and 6), players will not be able to walk
through some of the smaller openings in the levels anymore.

In any way, you should not change the size of a sprite image unless you absolutely
have to.

13

4. The VOC Converter

4.1. VOC Files

The digitized sounds (commonly referred to as wave sounds) used by Duke Nukem
IT are stored in CREATIVE VOICE FORMAT (see subsection 4.1.1). The following
files are VOC files:

e INTRO3.MNI e SB_1.MNI e SB_9.MNI e SB_22.MNI
e INTRO4.MNI e SB_2.MNI e SB_10.MNI
e INTRO5.MNI e SB_3.MNI e SB_13.MNI e SB_25.MNI
e INTRO6.MNI e SB_4.MNI e SB_17.MNI
e INTRO7.MNI e SB_5.MNI e SB_19.MNI e SB_28.MNI
e INTRO8.MNI e SB_7.MNI e SB_20.MNI
e INTRO9.MNI e SB_8.MNI e SB_21.MNI e SB_30.MNI

As the name suggests, the files INTRO3.MNI to INTRO9.MNI are part of the intro ani-
mation. The SB_x.MNT files are the SoundBlaster alternatives for the AdLib and PC
Speaker sound effects. All file names are hard-coded. If one of these files is missing,
the game will crash and it might even cause your system to freeze!

4.1.1. Creative Voice Format

Creative Voice Files were designed to be processed and played directly by a Creative
SoundBlaster card. This means that all decoding of the data contained in the files
is done in hardware. There is no reference software decoder, which makes is very
difficult to decode some VOC files properly. The DOSBox emulator is able to emulate
the SoundBlaster card, but there is no guarantee that the DOSBox emulator decodes
the data correctly.

15

Part Il.

Advanced Modding Techniques

17

5. Graphics

5.1. Color Palettes

This section of this document has yet to be written.

5.2. Masked Images

Masked images usually consist of five planes:

1. Mask plane
Blue plane
Green plane

Red plane

AN IS

Intensity plane

The video mode used by the game provides four separate color planes for blue, green,
red and intensity (which means the game is basically an EGA game hiding behind
a VGA palette). Unmasked images have no mask plane, so they can be drawn by
simply copying the byte values for each plane from the image data into the video
buffer.

To draw a masked image, the game applies the value from the mask plane to the
data stored in each plane of the video buffer using a bitwise AND function. This
means that the pixels, for which the bits in the mask plane are set, will be kept as
they are, while the other pixels are set to color 0 (black). The actual pixel values of
the masked image are then applied to the corresponding planes using a bitwise OR
function.

If the masked image’s plane data has some pixels that are not set to color 0 and
the mask bits for these pixels are set, the data will be applied to the non-zero
value in the video buffer and therefore modify the color value of the pixel instead

19

5. Graphics

of replacing it. This technique can be used to create some primitive lighting ef-

fects.

This section of this document has yet to be written.

20

6. Scripts

6.1. Script Files

The game uses a pretty sophisticated scripting language to define what the menues,
help texts, story, ordering information etc. look like.

The scripts are stored as (mostly) plain ASCII text in the following files:

e TEXT.MNI e OPTIONS.MNI
e HELP.MNI e ORDERTXT.MNI

The scripts can be edited with any text editor such as Notepad. However, there
might be some issues because the //SETKEYS command (see section 6.3.23) may
require the use of control characters (ASCII codes 0 to 31). The version of Notepad
bundled with Windows XP seems to be able to correctly read and write all the
control characters that are actually used in the game’s original script files. Other
text editors might not be able to handle the control characters correctly, so be
careful!

You should definitely not edit the script files with Microsoft Word or similar pro-
grams! Those programs might not write plain ASCII text when you save the file,
since they usually store additional typesetting information such as font, size and
color in the saved file. This will make the game unable to read the script files

properly.

6.2. Script Sections

Each script file contains one or more script sections. Each script section starts with
the name of the section and ends with the //END command. An empty script section
looks like this:

21

6. Scripts

My_Script
//END

When the game tries to execute a script, it will open the script file and search for the
name of the desired section. It will then interpret any command until it encounters
the //END command. If it cannot find a command in a line of text, the line will be
treated as a comment.

The name of each section as well as all commands usually start directly at the
beginning of a line. You can add spaces in front of a section name or a com-
mand, but not tabs. Tabs are treated as normal characters and as such will become
part of the name or command string, thus preventing the game from recognizing
them.

It is possible to have more than one command in one line. Using more than one
command per line, however, may have undesired side effects such as commands being
drawn onto the screen as part of a text.

These are the script sections used by the game:

6.2.1. &Calibrate

Found in: OPTIONS.MNI

This defines the background for calibrating the joystick. It simply draws an empty
window.

6.2.2. &Credits

Found in: TEXT.MNI

This defines what will be displayed when the user selects “Credits” in the main
menu.

6.2.3. &lnstructions

Found in: TEXT.MNI

This defines what will be displayed when the user selects “Instructions” in the “In-
structions And Story” menu.

22

6.2. Script Sections

6.2.4. &Load

Found in: TEXT.MNI

This defines the message that will be shown while loading a game. This message is
drawn on top of the “Restore Game” menu.

6.2.5. &Save

Found in: TEXT.MNI

This defines the message that will be shown while saving a game. This message is
drawn on top of the “Save Game” menu.

6.2.6. &Story

Found in: TEXT.MNI

This is the script for the story cutscene that will be displayed during the inro or when
the user selects “Story” in the “Instructions And Story” menu.

6.2.7. 2Quit_Select

Found in: TEXT.MNI

This defines the “Are you sure you want to quit?” windows for the actual game.
The first menu item is “Yes”, everything else means “No”.

6.2.8. BAD_GAME

Found in: TEXT.MNI

This defines what will be displayed when the “copy protection” of the registered
version fails.

6.2.9. Beta_Only

Found in: TEXT.MNI

Leftovers from the beta version. Not used by the final game.

23

6. Scripts

6.2.10. Both_S_I

Found in: TEXT.MNI

This defines all menu items for the “Instructions And Story” menu.

6.2.11. Episode_Select

Found in: TEXT.MNI

This defines all menu items for the “Select An Episode” menu. (For starting a new
game or viewing the high scores.)

6.2.12. Full_Health

Found in: TEXT.MNI

This defines the message for the EAT cheat. Registered version only.

6.2.13. Game_Speed

Found in: TEXT.MNI

This defines all menu items for the “Game Speed” menu.

6.2.14. God_Mode_Off

Found in: HELP.MNI
This defines the message for turning god mode off.

Note: I have no idea how to access god mode in the game, so don’t bother asking
me about it.

24

6.2. Script Sections

6.2.15. God_Mode_On

Found in: HELP.MNI
This defines the message for turning god mode on.

Note: I have no idea how to access god mode in the game, so don’t bother asking
me about it.

6.2.16. Hints

Found in: HELP.MNI

This defines the hint messages for each level. It consists entirely of //HELPTEXT
commands (see section 6.3.14 below).

6.2.17. HYPE

Found in: TEXT.MNI

This is the script for the hype cutscene that will be displayed when you start the game
for the first time (i. e. the config file NUKEM2. -GT does not exist).

6.2.18. Key_Config

Found in: OPTIONS.MNI

This defines all menu items for the “Game Controls” menu.

6.2.19. Main_Menu

Found in: TEXT.MNI

This defines all menu items for the main menu.

6.2.20. Music_Off

Found in: TEXT.MNI

This defines the message for turning the music off in-game.

25

6. Scripts

6.2.21. Music_On

Found in: TEXT.MNI

This defines the message for turning the music on in-game.

6.2.22. My_Options

Found in: OPTIONS.MNI

This defines all menu items for the “Game Options” menu.

6.2.23. New_Highscore

Found in: TEXT.MNI

This defines the background for entering a name into the highscore list.

6.2.24. No_Can_Order

Found in: TEXT.MNI

This defines the message that will be displayed when the user selects Episode 2, 3
or 4 in the “Select An Episode” menu. Shareware version only.

6.2.25. No_Game_Restore

Found in: OPTIONS.MNI

This defines the message that will be displayed when the user selects an empty slot
in the “Restore Game” menu. It is drawn on top of the menu.

6.2.26. Not_In_Game

Found in: OPTIONS.MNI

Not used by the final game.

26

6.2. Script Sections

6.2.27. Now_Ch

Found in: TEXT.MNI
This defines the message for the NUK cheat. Registered version only.

Note: Unlike the EAT and GOD cheats, the game will FadeOut after execut-
ing the script and Fadeln back to the game screen, switching back to the game’s
palette.

6.2.28. Ordering_Info

Found in: ORDERTXT.MNI

This defines what will be displayed when the user selects “Ordering Information”
in the main menu. Shareware version only. The registered version uses V40RDER
instead (see section 6.2.39 below).

6.2.29. Password

Found in: TEXT.MNI

Leftovers from the beta version. Not used by the final game.

6.2.30. Paused

Found in: TEXT.MNI

This defines the message for pausing the game. This must have a //WAIT command
or the game will not stay paused!

6.2.31. Q_Order

Found in: TEXT.MNI

This basically shows the first screen of the “Ordering Information”. Shareware
version only.

Note: I have not yet been able to figure out when this script is actually exe-
cuted.

27

6. Scripts

6.2.32. Quit_Select

Found in: TEXT.MNI

This defines the “Are you sure you want to quit?” windows for the main menu. The
first menu item is “Yes”, everything else means “No”.

6.2.33. Restore_Game

Found in: OPTIONS.MNI

This defines all menu items for the “Restore Game” menu.

6.2.34. Save_Game

Found in: OPTIONS.MNI

This defines all menu items for the “Save Game” menu.

6.2.35. Skill_Select

Found in: TEXT.MNI

This defines all menu items for the “Select Skill” menu.

6.2.36. Sound_Off

Found in: TEXT.MNI

This defines the message for turning the sound off in-game.

6.2.37. Sound_On

Found in: TEXT.MNI

This defines the message for turning the sound on in-game.

28

6.2. Script Sections

6.2.38. The_Prey

Found in: TEXT.MNI

This defines the message for the GOD “cheat”.

6.2.39. VAORDER

Found in: TEXT.MNI

This defines what will be displayed when the user selects “Ordering Information” in
the main menu. Registered version only. The shareware version uses Ordering_Info
instead (see section 6.2.28 above).

6.2.40. Volumel

Found in: TEXT.MNI
This defines the background of the highscore list for Episode 1.

Note: The game draws the names after the script is executed, and then calls
Fadeln.

6.2.41. Volume2

Found in: TEXT.MNI
This defines the background of the highscore list for Episode 2.

Note: The game draws the names after the script is executed, and then calls
Fadeln.

6.2.42. Volume3

Found in: TEXT.MNI
This defines the background of the highscore list for Episode 3.

Note: The game draws the names after the script is executed, and then calls
Fadeln.

29

6. Scripts

6.2.43. Volume4

Found in: TEXT.MNI
This defines the background of the highscore list for Episode 4.

Note: The game draws the names after the script is executed, and then calls
Fadeln.

6.2.44. Warp

Found in: HELP.MNI
This defines the menu items for the level warp cheat.

Note: I have no idea how to access this cheat in the game, so don’t bother asking
me about it.

6.2.45. Weapon Select

Found in: HELP.MNI
This defines the menu items for the weapon select cheat.

Note: I have no idea how to access this cheat in the game, so don’t bother asking
me about it.

6.3. Script Commands

These are the script commands used by the game:

6.3.1. APage

Usage:
//APAGE

The //APAGE command marks the beginning of a new page. See section 6.3.20 for
further details.

30

6.3. Script Commands

6.3.2. BabbleOff

Usage:
//BABBLEQFF

The //BABBLEOFF command turns the “babble” animation off and draws the first
frame of sprite 297 (closed mouth). This is required in case the user skips a //DELAY
command by pressing a key or the “babble” animation takes longer than the scripted
delay.

This command is only used in the section &Story in TEXT.MNI.

6.3.3. BabbleOn

Usage:
//BABBLEON <t>

The //BABBLEON command turns the “babble” animation on. The parameter <t>
defines how long the animation is being displayed (total number of babble frames,
11 frames per second).

The “babble” animation uses sprite 297 to animate the mouth of the TV anchor-
man. Each babble frame draws a random image of this sprite. The animation
stays active until all frames have been played or a //BABBLEOFF command is being
processed.

This command is only used in the section &Story in TEXT.MNI.

6.3.4. CenterWindow

Usage:
//CENTERWINDOW <y> <h> <w>

The //CENTERWINDOW command creates a window that is <w> tiles wide and <h> tiles
high. The upper border of the window will be <y> tiles below the top of the screen.
The window will be horizontally centered on the screen, unless it was shifted using
the //SHIFTWIN (see section 6.3.24). The game will animate the window (i.e. the
window gets larger until it reaches the desired size).

If the window should be dawn on top of the in-game screen, you must use the
//SETCURRENTPAGE command first. That’s because the game uses multiple screen
buffers while the menus only use a single buffer.

31

6. Scripts

Note that the width and height of the window include its borders! The window must
be 3 tiles high to hold one line of text. The //CWTEXT and //SKLINE commands are
used for drawing text inside a centered window.

6.3.5. CWText

Usage:
//CWTEXT <text>

The //CWTEXT command draws <text> centered in a centered window. The text
may contain special characters (see section 6.3.29 for further details), but it is best
not to use them in a centered window.

6.3.6. Delay

Usage:
//DELAY <t>

The //DELAY command causes the script to wait until <t> ticks have passed or a
key has been pressed. 1 second should be about 140 ticks.

6.3.7. End

Usage:
//END

The //END command marks the end of a script section. Any commands following
the //END command will not be interpreted.

6.3.8. ETE

Usage:
//ETE

The //ETE command is only used in ORDERTXT.MNI, which is only used by the share-
ware version. Since the command cannot be found as a string in the main executable
of either version, it is probably not used by the game at all.

32

6.3. Script Commands

This might have been intended to signal the interpreter to advance to the next page
when the user presses instead of stopping and returning the current page
number to the game. However, the final implementation in the game appears to
be hard-coded to ignore the key while interpreting certain script sections.
Known sections that ignore the key are Ordering_Info and &Instructions.

6.3.9. ExitToDemo

Usage:
//EXITTODEMO

The //EXITTODEMO command causes the game to go into demo mode after 30 seconds
without any input from the user.

This command is only used in the section Main_Menu in TEXT.MNI.

6.3.10. Fadeln

Usage:
//FADEIN

The //FADEIN command causes the game to fade the entire screen from black to
the normal state. It does so by manipulating the palette until all colors are back at
their original value. This command is only ever used after a raw screen or a palette
was loaded (see sections 6.3.16 and 6.3.13).

6.3.11. FadeOut

Usage:
//FADEQUT

The //FADEOUT command causes the game to fade the entire screen to black. It does
so by manipulating the palette until all colors are black. This command is often used
before a raw screen is being loaded (see section 6.3.16).

33

6. Scripts

6.3.12. GetNames

Usage:
//GETNAMES <n>

The //GETNAMES command draws the names of all savegames. The names will be
drawn at x coordinate 14 (112 pixels) and y coordinates 6 (42 pixels) to 20 (152
pixels), using the big font and color 2. Only the name whose index matches <n> is
drawn using color 3.

This command is only used in Save_Game and Restore_Game in OPTIONS.MNT.

6.3.13. GetPal

Usage:
//GETPAL <file>

The //GETPAL command loads a 16-color palette from <file>. The file must be a
palette file (the first 48 bytes of the file are loaded as the palette), not an image file.
This will also set all pixels in the screen buffer to color 0.

The palette will not be applied directly, so you may have to use the //FADEIN
command if you faded to black before loading the palette.

6.3.14. HelpText

Usage:
//HELPTEXT <e> <1> <text>

The //HELPTEXT command defines the <text> that will be displayed when the player
returns the hint globe to its pedestal on Episode <e> Level <1>. Only the ASCII
characters from A to Z (upper and lower case), the space, comma, period, exclama-
tion mark and question mark are printable. The asterisk character (*) is used as
a 'stop’ marker in the text. Each segment of the text should not be more than 37
characters long.

This command is only used in the section Hints in HELP.MNI.

34

6.3. Script Commands

6.3.15. Keys

Usage:
//KEYS

The //KEYS command draws the names of the keys that are currently used to control
Duke. The names will be drawn at x coordinate 26 (208 pixels) and y coordinates 7
(56 pixels) to 17 (136 pixels). The order of the keys is Fire, Jump, Up, Down, Left,
Right.

This command is only used in the section Key_Config in OPTIONS.MNI.

6.3.16. LoadRaw

Usage:
//LOADRAW <file>

The //LOADRAW command loads a 16-color image and its palette from <file>. The
file must be 32048 bytes in size.

The palette will not be applied directly, so you may have to use the //FADEIN
command if you faded to black before loading the image.

6.3.17. Menu

Usage:
//MENU <n>

The //MENU command defines a unique number for every menu (1 for the main
menu, 2 for the episode select menu etc.). The game uses these numbers to store
and restore the last cursor position for each menu.

6.3.18. NoSounds

Usage:
//NOSOUNDS

The //NOSOUNDS command disables the sound that is usually played when the user
navigates to the next or the previous page.

35

6. Scripts

6.3.19. PagesEnd

Usage:
//PAGESEND

The //PAGESEND command marks the end of an environment consisting of multiple
pages.

6.3.20. PagesStart

Usage:
//PAGESSTART

The //PAGESSTART command starts an environment that consists of multiple pages.

The first page begins after the //PAGESSTART command, all following pages must
start with the //APAGE command. The last page must end with the //PAGESEND
command before the end of the script section (see section 6.3.7).

If the user should be able to navigate through these pages with the arrow keys, you
must put a //WAIT command at the end of every page (before the //APAGE or the
//PAGESEND command). Otherwise the game will simply cycle through all pages
once and exit the script.

6.3.21. PAK (Press Any Key)

Usage:
//PAK

The //PAK (Press Any Key) command is used to draw the first frame of sprite 146.
The image contains the text “Press any key to continue” and is usually drawn near
the bottom-right corner of the screen.

6.3.22. SetCurrentPage

Usage:
//SETCURRENTPAGE

36

6.3. Script Commands

The //SETCURRENTPAGE command is often used before a centered window (see sec-
tion 6.3.4) is created. It is required for all message windows that are drawn on top
of the in-game screen, like 2Quit_Select and Paused. If this command is missing,
the window and its text may not show up on the screen at all.

6.3.23. SetKeys

Usage:
//SETKEYS <keys>

The //SETKEYS command defines a key for each menu item, so that the menu items
can be accessed by pressing a single key instead of navigating to the menu item and
pressing . It is also used to define the Y and N keys for the “Are you sure you
want to quit?” windows. <keys> is a sequence of ASCII characters, representing
the low-level scan code of each key (see figure 6.1).

The scan codes 1 to 31 must be handled very carefully, because the ASCII characters
0 to 31 are control characters. The control characters 9 (Horizontal Tab = HT),
10 (Line Feed = LF) and 13 (Carriage Return = CR) have a special meaning in
text files. The other control characters are usually considered to be non-textual and
therefore might not be processed properly by some text editors. The sequence CR
LF is used in MS-DOS text files to indicate a line break and cannot be used in a
script file, because the sequence will be interpreted by the game as the end of the
text line.

One way to prevent issues with text editors is to edit the script file with a hex editor
before you start editing it with a text editor. Search for //SETKEYS commands and
replace the scan codes with the hexadecimal value 30 (ASCII code for the digit 0).
The resulting text in the script would be //SETKEYS 00000000. Then you should be
able to open the script with any text editor, edit it, and save it correctly. After you
saved your modified script, you can use the hex editor again to change the parameter
of all //SETKEYS commands to the desired scan codes.

The other way is to use the customized TEXT.MNI file that comes with this docu-
ment as a base for your modifications. In the customized script file, all //SETKEYS
commands have been removed and the user can select “Yes” or “No” in the “Are
you sure you want to quit?” windows using the arrow keys.

The //SETKEYS command is only used in the file TEXT.MNI.

37

6. Scripts

6.3.24. ShiftWin

Usage:
//SHIFTWIN

The //SHIFTWIN command shifts the next centered window (see section 6.3.4) and
all following text three tile units to the left. In some cases, this command is
followed by a parameter in the script files (usually -3). That parameter is ig-
nored.

This command is used to draw the centered windows centered in the in-game screen
area, as shown in figure 6.2.

6.3.25. SkLine

Usage:
//SKLINE

The //SKLINE command is used to skip a line in a centered window (see section
6.3.4). Most message windows skip the first line of their centered window.

6.3.26. Toggs

Usage:
//TOGGS <x> <n> <y1> <t1> ... <yn> <tn>

The //TOGGS command turns the first <n> entries of a menu into switches for the
sound and music settings. The parameter <x> defines the x coordinate (in tile units)
of the switch images. As implied before, <n> defines the number of switches to follow.
Each switch is then given an y coordinate followed by a single character that defines
the type of the switch. Supported types are P (PC Speaker), S (SoundBlaster), L
(AdLib) and M (Music).

One noticeable side effect of the //TOGGS command is that it overrides the effects of
the first n menu items. For example, if you put the //TOGGS command in the script
for the main menu and define at least one switch, you cannot start a new game by
selecting the item “Start A New Game” and pressing . However, because
of the //SETKEYS command, you will still be able to start a new game by pressing

's]

This command is used in the section My_Options in OPTIONS.MNT.

38

6.3. Script Commands

1 59 60 61 62 63 64 65 66 67 68 87 88 ? 70 ?

B
82 71 73
g

83 79 8

Ctrl] [Alt I Space
29 56

Figure 6.1.: Keyboard Scan Codes

L L]y] P I E MNIiEE M

Figure 6.2.: Shifted And Unshifted Centered Windows

39

6. Scripts

Note: The //TOGGS command is also used in the Warp section in HELP.MNT to select
an episode (“volume”) number. The switch types for the episodes are the numbers
1 to 4.

6.3.27. Wait

Usage:
//WAIT

The //WAIT command waits until the user presses a key.

6.3.28. WaitCursorEnd

The //WAITCURSOREND command can be found as a string in the game’s executable,
but it is not used in any of the script files. Syntax and semantics of this command
are unknown.

6.3.29. XYText

Usage:
//XYTEXT <x> <y> <text>

The //XYTEXT command draws text or sprites at the given position (<x> and <y>
are in tile units). Using the default font, only the ASCII characters 32 (space) to
90 (’Z’), the underscore (’_") and the lower case letters ’a’ to 'z’ are printable. The
<text> parameter may contain the special ASCII characters listed in table 6.1. All
unprintable characters, including the special characters themselves, will be drawn
as a space.

If the big font is used, only the ASCII characters from A to Z (upper and lower case),
the digits from 0 to 9, the space, comma, period, exclamation mark and question
mark are printable. Unprintable characters will be displayed as random garbage.
Keep in mind that each glyph of the big font is two tiles high. The lower tile of the
glyph will be drawn at the given y coordinate.

You can type in any ASCII character by holding down the key and then typing
in the desired ASCII code using the “Num block”. If you're using Windows, you
must prefix the code with a zero. For example, you hold down , then type @

@ and release the key to type the “draw sprite” special character into
your script file.

40

6.3. Script Commands

Note: Sprites will not necessariy be drawn exactly at the given location. It’s x
coordinate will be <x>+1+4HandleX and the y coordinate of the bottom of the sprite
image will be <y>+41+HandleY. The handle values are defined for each frame in the
sprite files (see chapter 3). The sprite image might be shifted further to the left
if there is more than one space between the <y> parameter and the “draw sprite”
special character.

Note: The special characters are sometimes displayed as random garbage when
using the big font, so you should not use another special character after switching
to the big font. It is probably better to split your text into multiple //XYTEXT
commands if you want to use multiple colors in one line of text.

ASCII | Effect
239 | Draws a sprite. The character must be followed directly by exactly
five decimal digits. The first 3 digits are the sprite number, the last
2 digits are the sprite’s frame number.
240 | Switches to big font with color 0
241 | Switches to big font with color 1
242 | Switches to big font with color 2
243 | Switches to big font with color 3
244 | Switches to big font with color 4
245 | Switches to big font with color 5
246 | Switches to big font with color 6
247 | Switches to big font with color 7
248 | Switches to big font with color 8
249 | Switches to big font with color 9
250 | Switches to big font with color 10
251 | Switches to big font with color 11
252 | Switches to big font with color 12
253 | Switches to big font with color 13
254 | Switches to big font with color 14
255 | Switches to big font with color 15

Table 6.1.: Special ASCII Characters

6.3.30. Z

Usage:
//Z <y>

41

6. Scripts

The //Z command defines the y coordinate (in tile units) of the menu cursor. This
is almost always the y coordinate of the selected menu item’s text. The x coordinate
of the cursor is always 8 tile units (64 pixels).

42

7. Breaking Shareware Compatibility

7.1. Why?

In November 1995, Apogee released TED, the editor that was used to create the
levels for Rise of the Triad and a ton of other games. One of the files relased
along with the editor contains the following message:

We do respectfully request that you do not modify the levels for the
shareware version of Rise of the Triad. The authors worked hard on
the game and if there are lots of free levels available for the shareware
version, a user will have far less incentive to order the full game. So please
respect our wishes, and only create levels for the registered version. (And
we took so much trouble to put those handy Alternate Level selections
in the Registered Setup, too!)

I believe that Apogee would have requested the same for Duke Nukem II had
there been any editors available for it back then.

7.2. How?

There are many ways to make sure that your Levelpack/Mod/Total Conversion will
only work with the registered version of Duke Nukem II. The easiest and most
boring way is to only modify the levels for Episode 2, 3 and 4.

If you want to modify all four episodes, you should force the game to crash when
a user attempts to play it using the shareware version of Duke Nukem II. This
can be done by using files that are only included in the registered version as the
Backdrop, CZone or Music files of the first level of episode 1. See section 7.3 for a
list of suitable files.

This obviously limits the creative freedom for Episode 1 Level 1, especially if you
want to create a Total Conversion that replaces every image in the game. One quick
way to avoid having noticeable materials from the original registered version is to use

43

7. Breaking Shareware Compatibility

the alternate backdrop. The game will load the alternate backdrop even if none of
the backdrop-switching flags are set, so there is no way to ever switch to the alternate
backdrop. If it cannot load the alternate backdrop, it will crash.

Now, if you want complete creative freedom (i. e. you want to use backdrop-
switching in Episode 1 Level 1) you can modify the game’s script files. Simply
load one of the registered-only fullscreen images somewhere in the script before
the actual background image is loaded — preferably in the Main_Menu section of
TEXT.MNI. The best image to use for this method is END4-2.MNI because that image
is never used by the game, so there is no need to ever replace it with a custom
image.

The last method also prevents the user from loading a saved game to skip the
unplayable first level.

7.3. Registered-Only Files

7.3.1. Backdrops CZONE7 .MNI e WINNINGA.IMF

e CZONES.MNI
e DROP3.MNI

e CZONE9.MNI 734 FuIIscreen
e DROP4.MNI Images

e CZONEA.MNI
e DROP8.MNI

e CZONEB.MNI e END2-1.MNI

DROP15.MNI

* e CZONEC.MNI e END3-1.MNI
e DROP16.MNI e CZONED.MNI e END4-1.MNI
e DROP19.MNI o ENDA-3.MNI
e DROP23.MNI 7.3.3. Music e END4-3.MNT

e DEPTHSA.IMF e LOAD2.MNI

7.3.2. CZones

e KISGIRLA.IMF e LOAD3.MNI

e CZONE6.MNI e NUKEMANA.IMF e LOAD4.MNI

44

Appendix

45

A. MS-DOS Filenames

Most of the information in the following text was taken from a german MS-DOS 5.0
manual. It may not be translated correctly, but it should tell you everything you
need to know.

Every file has a Name and most files also have an FEztension. The name is always
displayed first and the extension is always separated from the name by a period, like
in the following example:

name.ext

If the file has no extension, then the period is optinal: name and name. both refer
to the same file.

The term Filename includes both the name and the extension of a file.

A.1. Names

Rules for the name of a file are:

e Names must contain at least one character (names must not be empty).
e Names must not be longer than eight characters.

e Names may only use the letters A to Z, the digits 0 to 9 and the following
characters: _ ~$ ' #%&-{}()e’ ¢

e Names must not include spaces, commas, slashes or periods (except for the
period that separates name and extension).

e The following names are reserved and must not be used as a name of a file:
CLOCK$, CON, AUX, COM1 to COM4, LPT1 to LPT3, NUL and PRN.

Note: You may use extended characters (ASCII codes 128 to 255) in a name. In
this case you should use code page 850, since code page 437 provides only limited
support for extended characters.

47

A. MS-DOS Filenames

A.2. Extensions

The rules listed above also apply to the extension of a file. The only difference is
that an extension may be empty and must not consist of more than three charac-
ters.

Note: Most modern versions of Windows do not show the extension of most files
by default.

48

B. FAQ

Q How did you come up with this stupid name for the editor?

A I once read that 3D Realms named their version of UnrealEd “Duke’s Enor-
mous Tool”. That’s how.

Q Where can I get the source code for the editor?

A Nowhere! At least not right now. The code is a huge mess and I’'m not gonna
release it until it’s cleaned up properly.

Q Where can I get the source code for the game?

A Nowhere! (I think there might be a pattern here.) Apogee/3D Realms never
released the source code for Duke Nukem II. It was said that the source code
was lost over the years.

Q The editor crashed! What do I do now?

A First, have a look at the log.txt file (to be found in the same folder as
Duke2Edit.exe). If there is nothing useful in that file, feel free to contact me
(see page VIII) and tell me about the issue. I won’t be able to check these
messages every day, so be prepared to wait for a few weeks (or months).

To identify the problem, I have might need you to send me whichever file you
were working on. You could speed things up a little by uploading the files
in question (level files, CZone files etc.) to an online file host of your own
preference and adding a link to the files in your post/message. Please do not
attach these files to an email — I will delete such mails without even reading
them.

49

List of Tables

6.1. Special ASCII Characters

o1

List

3.1.

6.1.
6.2.

of Figures

The Sprite Editor’s Edit Mode

Keyboard Scan Codes
Shifted And Unshifted Centered Windows

93

	Preface
	The Tools
	The Level Editor
	Level Files
	Creating A New Level
	Editing Map Settings
	Selecting And Drawing Tiles
	The Planes
	Level Format & Limitations
	Tiles And Tile Attributes
	Masked Foreground Tiles
	Limited Number Of Actors
	Limited Amount Of Memory

	The CZone Editor
	CZone Files
	Creating A New CZone
	Editing A CZone

	The Sprite Editor
	Sprite Files
	Editing The Sprites
	Changing The Number Of Sprites And Frames
	Sprite Properties
	Frame Properties

	Changing Images
	Editing Images With QuickPaint
	Importing And Exporting Images
	Palettes

	Image Format & Limitations
	Sprite 29
	Image Sizes And Hitbox Sizes

	The VOC Converter
	VOC Files
	Creative Voice Format

	Advanced Modding Techniques
	Graphics
	Color Palettes
	Masked Images

	Scripts
	Script Files
	Script Sections
	&Calibrate
	&Credits
	&Instructions
	&Load
	&Save
	&Story
	2Quit_Select
	BAD_GAME
	Beta_Only
	Both_S_I
	Episode_Select
	Full_Health
	Game_Speed
	God_Mode_Off
	God_Mode_On
	Hints
	HYPE
	Key_Config
	Main_Menu
	Music_Off
	Music_On
	My_Options
	New_Highscore
	No_Can_Order
	No_Game_Restore
	Not_In_Game
	Now_Ch
	Ordering_Info
	Password
	Paused
	Q_Order
	Quit_Select
	Restore_Game
	Save_Game
	Skill_Select
	Sound_Off
	Sound_On
	The_Prey
	V4ORDER
	Volume1
	Volume2
	Volume3
	Volume4
	Warp
	Weapon_Select

	Script Commands
	APage
	BabbleOff
	BabbleOn
	CenterWindow
	CWText
	Delay
	End
	ETE
	ExitToDemo
	FadeIn
	FadeOut
	GetNames
	GetPal
	HelpText
	Keys
	LoadRaw
	Menu
	NoSounds
	PagesEnd
	PagesStart
	PAK (Press Any Key)
	SetCurrentPage
	SetKeys
	ShiftWin
	SkLine
	Toggs
	Wait
	WaitCursorEnd
	XYText
	Z

	Breaking Shareware Compatibility
	Why?
	How?
	Registered-Only Files
	Backdrops
	CZones
	Music
	Fullscreen Images

	Appendix
	MS-DOS Filenames
	Names
	Extensions

	FAQ
	List of Tables
	List of Figures

